

LLRF 2013

Development and Test of Digital LLRF Control Procedures and Techniques in Scope of ILC

Mathieu Omet

Sokendai - The Graduate University for Advanced Studies KEK - High Energy Accelerator Research Organization Japan

- Introduction
- Nominal Operation
- High QL Operation
- Fully Automated PkQL Control for ILC-like Operation
- Near Klystron Saturation Operation
- Klystron Linearization
- Summary

- Introduction
- Nominal Operation
- High QL Operation
- Fully Automated PkQL Control for ILC-like Operation
- Near Klystron Saturation Operation
- Klystron Linearization
- Summary

Superconducting RF Test Facility (STF) Quantum Beam Project (QBP)

STF

 Development and demonstration of high gradient superconducting accelerator technology aimed for ILC Normal conducting photocathode RF gun* (5 MW Klystron on ground level)

Beam dump

Cavity gradient:

OBP

QBP

*operated using digital LLRF control techniques

Demonstration of high brightness

Compton scattering.

X-ray generation by inverse laser

X-ray detector

20±20% MV/m

Loaded Q: 3e6

Bunch number: 162500

Operation mode: pulsed

Repetition rate: 5 Hz

Pulse length: 1 ms

Bunch number: Bunch spacing:

Beam current:
Energy:

Charge:

162500 162.5 MHz 10 mA

40 MeV 62 pC

Mathieu OMET | Development and Test of Digital LLRF Control Procedures and Techniques in Scope of ILC | 10/04/2013 | 4

LLRF Control Loop

- Introduction
- Nominal Operation
- High QL Operation
- Fully Automated PkQL Control for ILC-like Operation
- Near Klystron Saturation Operation
- Klystron Linearization
- Summary

Nominal Operation

R	F	P	a	r	a	m	P	te	r
			_		_				

 $V_{Cav1} = 16 MV/m$

 $V_{Cav2} = 24 MV/m$

 $Q_{L1} = 3e6$

 $Q_{L2} = 3e6$

Filling time = $540 \mu s$

*Beam compensation active

Beam Parameter

Pulse Length = $615 \mu s$

Current = 6.6 mA

ILC Stability
Requirements

 $\Delta A/A = 0.07\%$

 $\Delta \Phi = 0.24^{\circ}$

Beam	6.6mA* (60 mins)	Off (20 mins)	
ΔA/A (cav1)	-	0.042%	
ΔA/A (cav2)	-	0.045%	
ΔΑ/Α (vector sum)	0.009%	0.008%	
Δφ (cav1)	-	0.027°	
Δφ (cav2)	-	0.021°	
Δφ (vector sum)	0.009°	0.008°	

All stabilities are estimated for the beam transient time.

- Introduction
- Nominal Operation
- High QL Operation
- Fully Automated PkQL Control for ILC-like Operation
- Near Klystron Saturation Operation
- Klystron Linearization
- Summary

High Q_L Operation

ILC requirements

- Operation intended at Q_L values in a range of 3e6 to 10e6
- Bandwidth becomes very narrow (e.g. 32Hz at Q_L=2e7), detune becomes severe
- Microphonics maybe problematic to deal with
- Demonstration only possible at KEK STF due to wide QL range (2e6~5e7)
- → Q_L adjustment with waveguide reflectors Automated detune compensation via piezo tuners

High Q_L Operation

RF Parameter

 $V_{Cav1} = 20 MV/m$

 $V_{Cav2} = 20 MV/m$

 $Q_{L1} = 2e7$

 $Q_{L2} = 2e7$

Filling time = $800 \mu s$

*Beam compensation

active

Beam Parameter

Pulse Length = $615 \mu s$

Current = 6.1 mA

		Higl	h Qı	Nominal		
	Beam	6.1 mA* (60 mins)	Off (20 mins)	6.6 mA* (60 mins)	Off (20 mins)	
	ΔΑ/Α (cav1)	0.121%	0.030%	-	0.042%	
	ΔA/A (cav2)	0.160%	0.032%	-	0.045%	
	ΔA/A (vector sum)	0.011%	0.008%	0.009%	0.008%	
	Δφ (cav1)	0.033°	0.027°	-	0.027°	
	Δφ (cav2)	0.028°	0.027°	-	0.017°	
-	Δφ (vector sum)	0.015°	0.014°	0.009°	0.008°	

All stabilities are estimated for the beam transient time.

- Detuning stayed constant during 1h operation
 - → Microphonics are not severe
- Fulfills ILC stability requirements ($\Delta A/A = 0.07\%$, $\Delta \varphi = 0.24$)

- Introduction
- Nominal Operation
- High QL Operation
- Fully Automated PkQL Control for ILC-like Operation
- Near Klystron Saturation Operation
- Klystron Linearization
- Summary

PkQL Control

Target: Operation with flat flattops

- Stable beam acceleration (Cavity gradient tilts and RF fluctuations induce transverse beam orbit changes)
- High gradient operation near quench limit during whole flattop for all cavities

Operation of multiple cavities driven by a single klystron combined with beam loading leads to gradient tilts \rightarrow **P**_k**Q**_L **Control**

PkQL Control Goal

ILC requirements

- Fully automated P_kQ_L operation (~16000 cavities)
- Cavity gradient spread ±20% (e.g. 16 MV/m and 24 MV/m)
- Cavity gradients 5% below of respective quench limits
- Cavity gradients must never exceed quench limits
- Cavity vector sum stabilities $\Delta A/A = 0.07\%$ and $\Delta \phi = 0.24^{\circ}$

Steps to engage in PkQL operation

- Determination of working point for adjustment of cavity RF input powers (Pk) and QL values respective to the beam current
- Fully automated PkQL setting procedure

PkQL Operation Stabilities

RF Parameter

 $V_{Cav1} = 16 MV/m$

 $V_{Cav2} = 24 MV/m$

 $Q_{L1} = 9e6$

 $Q_{L2} = 3e6$

Filling time = 410 μ s

*Beam compensation active

Beam Parameter

Pulse Length = $615 \mu s$

Average current = 6.4 mA

	PkQL	Non	ninal	
Beam	6.4 mA* (60 mins)	6.6 mA* (60 mins)	Off (20 mins)	
ΔA/A (cav1)	0.041%	-	0.042%	
ΔA/A (cav2)	0.031%	-	0.045%	
ΔA/A (vector sum)	0.009%	0.009%	0.008%	
Δφ (cav1)	0.042°	-	0.027°	
Δφ (cav2)	0.031°	-	0.021°	
Δφ (vector sum)	0.009°	0.009°	0.008°	

All stabilities are estimated for the beam transient time.

- First actual PkQL operation
- Vector sum stabilities comparable with nominal operation
- Fulfills ILC stability requirements ($\Delta A/A = 0.07\%$, $\Delta \varphi = 0.24$)

- Introduction
- Nominal Operation
- High QL Operation
- Fully Automated PkQL Control for ILC-like Operation
- Near Klystron Saturation Operation
- Klystron Linearization
- Summary

Near Klystron Saturation Operation

ILC requirements

- Operation within 5% of klystron saturation
- Save power (all power always goes to the collector)
- Reduce operating costs (water cooling)

Klystron for SCCs at STF

- Toshiba E37501
- 800 kW
- Triode-like tube

Suppression of Overdrive

At STF QB project

- DAC limiter rectangular in I and Q plane
- ±I and ±Q limits can be set individually

RF Parameter

 $V_{Cav1} = 16 MV/m$

 $V_{Cav2} = 24 \text{ MV/m}$

 $Q_{L1} = 3e6$

 $Q_{L2} = 3e6$

Filling time = 523 μs

HV = 49 kV

Beam Parameter Pulse Length = 100 μs Average current = 5.9 mA

Stabilities Near Klystron Saturation

- Introduction
- Nominal Operation
- High QL Operation
- Fully Automated PkQL Control for ILC-like Operation
- Near Klystron Saturation Operation
- Klystron Linearization
- Summary

Target of Klystron Linearization

Actual output: Non-linear & oversaturation

Desired output: Linear & constant at saturation point

- Klystron linearization (non-linear) and klystron (non-linear) → linear output
- Amplitude limitation

Principle

Requirements:

- 3rd order correction function for calculation of correction factor
- Limiter circular in I and Q plane
- On/Off switch

Configuration parameter:

- a, b, c, d (for correction factor function)
- I (limit)
- sw (On/Off switch)
- Addition to loop delay as low as possible
- In case of switch off no additional loop delay
- For superconducting cavities

Test Setup at Fermilab NML

Estimation of Parameters

Using Mathematica

- Recorded klystron output w/o kly. lin. (feedforward amplitude scan)
- Fit to klystron output
- Estimation of linear target function
- Fit to target function for parameter estimation

Parameter	Value
a	1.91
b	-2.38
c	1.19
d	0.16

Limit estimated by point of saturation

Test at NML - Result

Comparison of FF Amplitude Scan at NML and expected output due to fit in Mathematica

- Introduction
- Nominal Operation
- High QL Operation
- Fully Automated PkQL Control for ILC-like Operation
- Near Klystron Saturation Operation
- Klystron Linearization
- Summary

Summary

- STF / Quantum beam project
- Digital LLRF feedback loop
- Stabilities for long time nominal operation were evaluated with and without beam
- Even under high QL (2e7) operation the stabilities were comparable to nominal operation
- First full automated ILC-like PkQL operation was demonstrated with stabilities comparable to nominal operation

Summary

- A near klystron saturation study showed that stable operation within 5% of klystron saturation is possible in case of mached beam current
- Successful development and test of klystron linearization at NML, measured klystron output agrees well with expected output

Thank you very much for your attention!